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A laboratory study was carried out to directly measure the turbulence properties
in a benthic boundary layer (BBL) above a uniformly sloping bottom where the
BBL is energized by internal waves. The ambient fluid was continuously stratified
and the steadily forced incoming wave field consisted of a confined beam, restricting
the turbulent activity to a finite region along the bottom slope. Measurements of
dissipation showed some variation over the wave phase, but cycle-averaged values
indicated that the dissipation was nearly constant with height within the BBL.
Dissipation levels were up to three orders of magnitude larger than background
laminar values and the thickness of the BBL could be defined in terms of the
observed dissipation variation with height. Assuming that most of the incoming wave
energy was dissipated within the BBL, predicted levels of dissipation were in good
agreement with the observations.

Measurements were also made of density and two orthogonal components of the
velocity fluctuations at discrete heights above the bottom. Cospectral estimates of
density and velocity fluctuations showed that the major contributions to both the
vertical density flux and the momentum flux resulted from frequencies near the
wave forcing frequency, rather than super-buoyancy frequencies, suggesting a strong
nonlinear interaction between the incident and reflected waves close to the bottom.
Within the turbulent BBL, time-averaged density fluxes were significant and negative
near the wave frequencies but negligible at frequencies greater than the buoyancy
frequency N. While dissipation rates were high compared to background laminar
values, they were low compared to the value of εtr ≈ 15 νN2, the transition value
often used to assess the capacity of a stratified flow to produce mixing. Existing
models relating mixing to dissipation rate rely on the existence of a positive-definite
density flux at frequencies greater than N as a signature of fluid mixing and therefore
cannot apply to these experiments. We therefore introduce a simple model, based
on the concept of diascalar fluxes, to interpret the mixing in the stratified fluid in
the BBL and suggest that this may have wider application than to the particular
configuration studied here.

1. Introduction
Quantifying the dynamical processes in the benthic boundary is of fundamental

interest both in oceanography and limnology. It is believed, for example, that the
vertical transport of mass in the benthic layer may account for the discrepancy
between vertical exchange rates determined from large-scale budget calculations and
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the lower estimates inferred from direct turbulent microstructure measurements in
the interior of lake and ocean basins (e.g. Munk & Wunsch 1998). Turbulence in
the benthic boundary layer can also play a central role in the transport of nutrients,
sediment and biological material into the interior fluid via the formation of baroclinic
horizontal intrusions (e.g. De Silva, Imberger & Ivey 1997, hereafter referred to as
DII). Field experiments in both the ocean (e.g. Eriksen 1982, 1985; Wolanski 1987;
Thorpe, Hall & White 1990; Toole, Polzin & Schmitt 1994; White 1994; Van Haren,
Oakey & Garrett 1994; Ledwell & Hickey 1995) and in lakes (Imberger & Hamblin
1982; Wuest et al. 1994; Lemckert & Imberger 1995) have been designed to investigate
these processes. Benthic turbulence is known to result from a variety of mechanisms,
including flow over topographically rough terrains, river inflows, basin-scale seiches,
and the breaking of internal gravity waves. In this work, we consider turbulence
generated by the breaking of internal gravity waves impinging on a sloping bottom.

In the linear limit, an internal gravity wave of frequency ω propagates through a
stratified fluid of buoyancy frequency N at an angle α = sin−1(ω/N) to the horizontal.
Here N2 = −(g/ρ0)∂ρ/∂z where ρ(z) is the ambient density profile after complete
relaxation and ρ0 is a reference density. The presence of the solid bottom results
in a reflected wave with the same intrinsic wave frequency as the incident wave.
Linear internal wave reflection off a sloping bottom in the two-dimensional case
has been treated analytically by Phillips (1977). Eriksen (1985) extended the analysis
to obliquely incident waves while Thorpe (1987) considered finite-amplitude internal
waves. DII introduced a geometric parameter γ = sin α/ sin β where α is the angle of
the wave vector and β is the angle the sloping bed makes with the horizontal, both
relative to the horizontal. For critically incident waves when γ = 1(ω = N sin β), the
linear, inviscid analysis becomes singular and large amplitudes of the reflected wave
are predicted. The critical case has thus received most attention. However, Ivey, De
Silva & Imberger (1995) and DII found that when γ > 1, turbulent mixing can be
expected for a wide parameter range and can be more intense in this range than for
the critical case when γ = 1.

Despite the importance of the process, only a handful of laboratory experiments
have examined the process of internal wave reflection at sloping beds (Cacchione &
Wunsch 1974; Ivey & Nokes 1989, 1990; Taylor 1993; DII; Michallet & Ivey 1999).
DII showed that boundary mixing driven by internal wave reflection could be viewed
as an interaction between the incident and reflected wave fields. For an incident
wave beam of finite width, this interaction occurs primarily in the triangular region
defined by the superposition of incident and reflected wave beams. Flow visualization
and particle velocimetry by DII showed that, near critical conditions, the turbulence
was confined to a thin narrow region just above the bottom where most of the
incident wave energy was dissipated with relatively small overturning lengthscales.
More vigorous mixing, and larger overturning lengthscales, were observed in the
range 1.5 < γ < 2, consistent with previous laboratory experiments reported by Ivey
& Nokes (1990) and Ivey et al. (1995). In the present laboratory study, we extend
these earlier studies by directly measuring turbulence properties, in particular the
turbulent fluxes of mass and momentum, in the benthic boundary layer energized by
internal waves.

We describe the laboratory experiments in § 2, followed by the presentation of the
dissipation and flux measurements in § 3. In § 4, we interpret these measurements in
the light of existing models which relate mixing to dissipation rates. As we show, it is
difficult to reconcile our observations with existing models, and we therefore present
in § 4.2 an alternative model of mixing, based on the concept of diascalar fluxes, which
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Figure 1. (a) Schematic of the laboratory set-up showing the configuration of the paddle, hori-
zontally traversing thermistor probe and location of flux probe to measure in situ turbulent fluxes.
(b) Definition of bottom slope and wave ray slope.

is consistent with the present observations. This model cannot be comprehensively
tested in the present experiments, but as outlined in § 4.2 and in the conclusions in § 5,
it is offered both as a testable hypothesis for future work and to stimulate discussion
on the principles underlying mixing rates in stratified fluids.

2. Experiments
2.1. Experimental facility and the instrumentation

The experimental facility consisted of a glass-walled tank 590 cm long, 54 cm wide
and 60 cm deep (DII). The experiments were done in a 3 m long partitioned portion
of this tank to reduce the total volume of the fluid. A 12 mm thick Plexiglas sheet,
pivoted as its centre point and with the pivot point mounted 12 cm above the tank
bottom formed a uniform sloping bed. The internal wave rays were generated using
a multi-bladed folding paddle, made up of eight separate hinged blades free to pivot
independently about their long central axis. Each blade was 5 cm wide by 53.5 cm
long, extending over the entire width of the tank. The blades could be moved by a
series of rods connected to an eccentric wheel driven by a precision DC motor. When
oscillated the system formed an oscillating M or W shape (for details see DII; Teoh,
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Ivey & Imberger 1997 and figure 1). The wavelength in the plane of the paddle was
thus 20 cm and the amplitude of the blade oscillation was kept constant at 3.1 cm.

For the experiments described in this paper, the paddle assembly used by DII
was re-designed so that the entire structure could be pivoted to a required angle α.
This arrangement was chosen for two reasons: first, with the new arrangement, the
paddle blades force the fluid particles to travel in the preferred direction of the wave
ray which reduces mixing due to paddle forcing and, secondly, only one ray tube is
produced so that most of the paddle energy is imparted to the intended beam. In
this way, when the paddle was oscillated only a single beam of internal waves could
be generated – a beam which propagated away from the paddle perpendicular to the
plane of the paddle. With this configuration, a single beam of internal waves oriented
at predetermined angles with respect to the bed could be readily excited (see figure 1).

2.2. Experimental procedure

The tank was filled with a linearly stratified salt solution to a depth of 50 cm and
while there were inevitably small temperature variations in the vertical associated
with the filling, temperature is effectively a passive tracer. The wave paddle assembly
was then fixed in position, adjusted to the desired orientation, and the wave motion
initiated by oscillating the blades forming the wave paddle. Typical experimental runs
lasted about 5 minutes. While data were recorded throughout a run, our analyses
are confined to the steady regimes well after the initial transients. Depending on the
experiment, measurements were made in one of two different modes: either a profiling
mode in which the sensors were traversed through the fluid or a time series mode in
which the sensors were held at a fixed location.

Profiling was carried out using both vertical and horizontal traverses. Vertical
measurements of the temperature and conductivity were recorded to obtain the vertical
density profile. This was accomplished using three probes: a fast-response Precision
Measurement Equipment four-electrode microscale conductivity probe, a siphoning
conductivity probe, and an FP07 thermistor for temperature. The siphoning probe
was used to provide dynamic calibration for the fast-response conductivity probe. The
spacing between the tips of the three sensors was less than 4 mm. The probe assembly
was mounted on a computer-driven platform with a traversing speed of 10 cm s−1.
Direct and differentiated output from each sensor was recorded at 100 Hz via a 16-bit
A/D converter.

Estimates of the rate of dissipation of turbulent kinetic energy ε were made by
measuring the gradient of the temperature signal along horizontal traverses and fitting
the theoretical Batchelor spectrum (see § 3.1). While the density variation was due to
the salinity variation, there were always small variations in the temperature resulting
from the filling process and slight fluctuations in the laboratory air temperature over
time. Current sensor technology does not allow measurements out to the dissipation
range in the salinity field, but it is possible in the temperature field. Previous work in
similar configurations (Teoh et al. 1997; DII) indicated that with a spatial resolution of
about 1 mm such measurements obtained from vertical profiling yield relatively small
record lengths for typical laboratory-scale turbulent events. In the present experiments,
the thermistor sensor was traversed horizontally at a constant height laterally across
the width of the tank – thereby taking advantage of the two-dimensional nature of
the wave created by the uniform paddle forcing across the tank width. The traversing
speed was set at 10 cm s−1 and the technique yielded record lengths of 256 mm, or
256 points, for the spectral analysis. The time taken to obtain a complete record
was short compared to typical wave periods. The method had the dual advantages
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Run α (deg.) β (deg.) N (rad−1s) γ

1 47 20 0.68 2.15
2 48 36 0.73 1.26
3 41 10 0.74 3.76
4 44 25 0.70 1.67
5 50 22 0.74 1.91
6 37 22 0.74 1.52
7 37 10 0.74 3.46
8 37 10 0.74 3.28
9 37 15 0.74 2.19

10 37 25 0.74 1.35
11 37 25 0.74 1.34

Table 1. Summary of experimental runs. Angles are defined in figure 1(b).

of not only yielding longer record lengths, and hence better fits with the theoretical
spectrum, but also permitted investigation of the spatial variation of dissipation ε
with distance above the bottom at very fine resolution – starting as little as a few mm
off the bottom.

The time series measurements were made from the commencement of paddle
motion with the Portable Flux Profiler (PFP) (described by Imberger & Head 1994
and originally designed for use in the field). The instrument is equipped with duplicate
pairs of FP07 thermistors and fast-response conductivity sensors, and a laser Doppler
anemometer measuring two orthogonal components of velocity with a resolution of
0.001 m s−1 on each channel. The temperature and conductivity sensors were separated
by 2.5 mm in the horizontal, the time response and resolution of the temperature
sensor were 12 ms and 0.001◦C, while those of the conductivity probe was 4 ms and
0.0004 S m−1, respectively. While the density variation in the vertical was dominated
by the salinity variation, with this accuracy of temperature resolution we were easily
able to resolve the gradient temperature signals due to the small background or mean
temperature variations inevitably resulting from the filling process. The temperature
and conductivity signals from the PFP were filtered using a recursive filter (sharpened
and smoothed) to match the differences in time responses. Further details regarding
the instrument can be found in Imberger & Head (1994), Saggio & Imberger (2000)
and Etemad-Shahidi & Imberger (1998).

The PFP was mounted on an assembly attached to two rails running along each side
of the tank. The assembly allowed for vertical adjustments so that the measurement
volume of the probe could be positioned at a prescribed height above the sloping
bottom. With the wave paddle placed at an angle α to the horizontal, the centre
of the emanating wave ray was directed at the hinge point O (see figure 1). The
measurements were taken along the vertical centreline through the hinge point. To
achieve measurements close to the bed, the PFP had to be inclined to the vertical at an
angle of 37◦. The probe itself was placed upslope of the hinge point and all runs were
confined to the supercritical case to minimize the unwanted effects associated with
flow passing around the probe. Turbulent fluxes of both mass and momentum were
obtained via time series records of two orthogonal velocity components, temperature
and conductivity, typically recorded for a period of about 5 minutes after the initiation
of wave forcing.

A summary of the runs conducted listing the experimental parameters is shown in
table 1.



64 G. N. Ivey, K. B. Winters and I. P. D. De Silva

3. Results
3.1. Dissipation measurements

The dissipation of turbulent kinetic energy ε was obtained by fitting a theoretical
Batchelor spectrum (Batchelor 1959) for the temperature gradient to the measured
temperature gradient spectra, taking ε as a free parameter. While conductivity mea-
surements were also made, the conductivity sensor is unable to resolve down to the
salinity dissipation scales, so we only use the temperature gradient signal in subse-
quent processing. This technique has been successfully used both in the field (e.g.
Imberger & Ivey 1991) and in laboratory studies (e.g. DII; Teoh et al. 1997; Grigg &
Ivey 1997). Temperature sensor resolution limits measurement of dissipation values to
a low value of around 10−10 m2 s−3 (e.g. Etemad-Shahidi & Imberger 1998; Luketina
& Imberger 1999), much less than the observed dissipation levels in the BBL. Using
typical experimental parameters, a wave amplitude a = 0.01 m, a wavenumber k = 5
rad m−1 and a forcing frequency ω = 0.5 rad s−1, yields an estimate of the dissipation
rate induced by the laminar wave as εwave − ν(akω)2 − 10−9 m2 s−3; just above the
instrument noise level. Calibration testing (M. Barry, personal communication) has
shown that at probe traversing speeds of 10 cm s−1, the upper limit of the dissipation
estimates is around 6×10−6 m2 s−3, while repeated sampling of the same flow indicates
that the accuracy of dissipation estimates is ±30% (where the error bound represents
±1 standard deviation) throughout the range from this high end value down to the
low end at 10−10 m2 s−3.

Flow visualization by DII showed that, owing to the nature of the paddle design
and the experimental geometry, the flow field is nearly two-dimensional outside the
BBL. Within the BBL, the signatures of small-scale turbulence are superimposed on
the nearly two-dimensional background wave field. One thus expects a variation in
the dissipation rate with height from the bottom. Ivey et al. (1995) considered a simple
energy balance in the wave interaction region for critical waves (γ = 1) and this can
be readily extended for the present case with γ 6= 1.

For an internal wave train in two dimensions, linear theory (e.g. Phillips 1977)
indicates that the velocity and density perturbations are described by

u = −w0 sin α cos (kx+ mz − ωt), (1a)

w = w0 cos α cos (kx+ mz − ωt), (1b)

ρ = − w0

gω
ρ0N

2 cos α sin (kx+ mz − ωt), (1c)

where u and w are the horizontal and vertical (positive upward) velocities, k and m
are the horizontal and vertical wavenumbers, w0 is the maximum particle speed and
α the angle of the group velocity vector to the horizontal. The average over one wave
period of the incident vertical energy flux passing through a horizontal surface with
dimensions of one wavelength in the x-direction (and per unit width in y) is then

Ei =
π

k
ρ0w

2
0C sin α, (2)

where the phase speed C = ω/(k2 + m2)1/2.
The reflected energy is given by Er = rEi where r is the reflection coefficient. The

average dissipation rate over a wave cycle in a turbulent mixing layer of thickness h
adjacent to the bottom is then given by

ε̄ =
Ei − Er
ρ0hl

=
(1− r)El
ρ0hl

. (3)
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Figure 2. Measured dissipation ε (m2 s−3) as a function of height for runs 1–4 (a–d). The perpen-
dicular distance from the slope is non-dimensionalized by the estimate of benthic boundary layer
thickness in equation (4). Dissipation estimates are ±30%.

In equation (3), l is the maximum length along the slope over which any energy dissi-
pation could occur, and this is determined by the width of the incident and reflected
wave beams and the geometry, implying that the length l = (2π sin α)/k sin(α + β)
(see figure 1). From published laboratory data for the critical case, Ivey et al. (1995)
showed that the thickness h = (0.10 − 0.15)λp, where λp is the wavelength of the
incident wave measured in the direction perpendicular to the bottom slope, and h
was estimated from either visual observation or microstructure profiles in the vertical
which recorded vertical overturn scales. Assuming for the moment that the same
condition applies for all waves with γ > 1, then we may write

h = 0.1
2π√

k2 + m2 cos (α+ β)
, (4)

where we have chosen the lower bound for the coefficient. Substituting (4) into (3)
and using l = (2π sin α)/k sin(α + β), we obtain an expression for the cycle-average
dissipation ε̄ in the benthic layer in terms of external wave parameters as

ε̄ = 0.4(1− r)w2
0N cos α sin 2(α+ β), (5)

The measured dissipation rates are shown as a function of height from the bottom
in figure 2 for four runs with γ ranging from 1.4 to 2.2. Distance from the bottom is
non-dimensionalized by the estimate of benthic layer height in equation (4). Close to
the bottom, dissipation estimates are as high as 10−6 m2 s−3 and decrease to levels as
low as 10−9 m2 s−3 far from the bottom. Despite numerous attempts, it was difficult
to obtain dissipation estimates from Batchelor fitting techniques far from the bottom
because the background flow was non-turbulent laminar internal wave motion. At
any particular elevation above the slope, dissipation varies in successive estimates due
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Figure 3. (a) Dissipation data from all the runs in figure 2 with vertical bins as shown. (b)
Bin-averaged data. Height is non-dimensionalized by the estimate of benthic boundary layer height
in equation (4) and all dissipation estimates are non-dimensionalized by the estimate of dissipation
in equation (5). (c) Bin-averaged dissipation non-dimensionalized by νN2 for all data shown in
figure 2.

to wave phase – a feature noted in earlier experiments by Ivey & Nokes (1989), for
example.

In figure 3(a), the data from the various runs are combined by non-dimensionalizing
the measured dissipations by the cycle-averaged values in equation (5), where we
assume for the moment that the reflection coefficient r = 0 (see below). Data were
binned according to the bin sizes shown in figure 3(a) and the phase- and bin-averaged
values are shown as a function of height in figure 3(b). As can be seen from figure 3(b),
the dissipation is nearly constant over the benthic layer height h, and beyond that it
decreases rapidly with increasing height, approaching the background levels typical
of the incident linear wave field. The thickness of the boundary layer, determined
here in terms of the spatial variation of dissipation ε, is well described by (4) despite
the fact that the BBL thickness estimated by Ivey et al. (1995) was based on very
different measures of the turbulence field. The best-fit coefficient in equation (4) was
0.08; it was rounded to 0.1 in accord with the previous results from the critical case.
The most notable feature from figure 3(b) is that the measured values of dissipation
are in close agreement with the cycle-average predicted dissipation in equation (5).
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The close accord between model predictions and observations suggests that the
underlying assumptions made in deriving the model are reasonable. As can be
seen from figure 3(b), the observed dissipations are slightly less than the predicted
dissipations obtained by assuming r = 0. Measured values of dissipation averaged
over the BBL are approximately 70% smaller, implying that the best estimate of the
reflection coefficient in (5) is r = 0.3. Much of the incident wave energy was clearly
lost in a single reflection from the bottom and little energy escapes the BBL, even
when the incident waves are slightly supercritical as in the present case.

Finally, in figure 3(c), we plot the quantity (ε/νN2) as a function of height. When
the dissipation rate is small enough that (ε/νN2) = (L0/LK)4/36 15, results from
laboratory experiments (e.g. Itsweire, Helland & Van Atta 1986) and field experiments
(e.g. Saggio & Imberger 2000) indicate that an irreversible downgradient turbulent
density flux is no longer sustained. In this limit, the Ozmidov scale LO = (ε/N3∗ )1/2 and
the Kolmogorov scale LK = (ν3/ε)1/4 are comparable, hence there is no bandwidth of
turbulent overturning scales able to support a density flux. In the present experiments
(ε/νN2) = 1 within the boundary layer, a value typical of measurements made in
earlier wave–bottom interaction experiments by DII, and wave–wave interaction
experiments by Teoh et al. (1997). In the present case, with wave-forced turbulence,
there is an input into the velocity and density fields at the internal wave scale a and
it is thus of interest to examine the measured density flux in the light of the results in
figure 3(c).

3.2. Density flux measurements

Variance-preserving cospecta (e.g. Bendat & Piersol 1966) of density and vertical
(positive upwards) velocity Copw are shown in figure 4 at four different heights for
some typical runs. For each run, the measurement height is non-dimensionalized by
the benthic boundary layer thickness in equation (4). In all cases, the records were
close to the bottom and individual signals consist of a superposition of incoming and
reflected wave rays. A negative value of the cospectrum indicates transport leading
to re-stratification, whereas a positive value indicates downgradient transport. The
clearest feature for all heights shown in figure 4 is that the density flux is centred
on the forcing frequency ωf , indicating the nonlinear nature of the wave field. The
magnitude of this re-stratifying buoyancy flux is comparable inside and outside the
boundary layer, although there is some weakening of this flux for z < 0.2 h. The
sign of the density flux is always negative, however, indicating re-stratification. This
re-stratifying density flux associated with wave–wave interactions is evidently part of
a secondary flow on a scale larger than that defined by the turbulent BBL. Such a flow
is illustrated in DII’s figure 15, for example, with slow flow out from the boundary
region and a compensating return flow above and below the outflow.

It is tempting to assume that the contribution to the density flux from frequencies
above the frequency N is due to turbulence, while that between the paddle frequency
and N is due to the wave motions. In this case, however, care is required due to the
possibility of Doppler shifting. With some caution therefore in regard to the exact
limits of integration, the contribution to the buoyancy flux b = −(g/ρ0)ρ′w′ due to
turbulent motions alone can be defined as (e.g. Sun, Kunze & Williams 1996)

b = − g

ρ0

∫ ∞
N

Coρwdω. (6)

As can be seen from figure 4, irrespective of either the position in the BBL or the
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Figure 4. Cospectra of density and vertical velocity, in variance-preserving form, obtained from
four different heights from the bottom for two typical runs: (a) run 6 and (b) run 9. The dashed
vertical line corresponds to the buoyancy frequency, and the dotted vertical line to the wave forcing
frequency ωf . Confidence limits are shown as dotted lines. The height h refers to the prediction for
the benthic boundary layer height in equation (4). The accuracy of buoyancy flux measurements is
±15%.

value of the criticality parameter γ, the density or buoyancy flux is small, certainly
negligibly small compared to the flux values near the forcing frequency.

The density flux is thus dominated by the wave contribution. From figures 3 and
4, inside the BBL we have a region of both enhanced turbulent dissipation and
enhanced departure from linear wave behaviour compared to background levels. The
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dissipation is dominated by contributions from high wavenumbers and frequencies,
and uncorrelated with the observed density flux which is predominantly at the
frequency ωf . The internal wave contribution to dissipation is always negligibly small
(even in a nonlinear wave field) compared to the measured values εmax ≈ 10−6 m2 s−3.
This implies that frequencies with ω>N dominate the observed dissipation rates.
The lack of a significant positive or downgradient density flux at frequencies ω > N
in figures 3 and 4 is consistent with the observation that (ε/νN2) ≈ 1, but leads to
a rather fundamental question. Given that the dissipation ε is so high (nearly 103

times the background laminar internal wave levels in figure 3b), does the lack of local
positive density flux really imply that there is no local irreversible mixing? We suggest
not, and explore this issue in more detail in § 4.

3.3. Reynolds stress

For completeness, in figure 5 we show the corresponding variance-preserving cospectra
of horizontal and vertical velocity Couw for the runs in figure 4. The dominant
contribution to the Reynolds stress occurs at ωf where uw < 0 both inside and
outside the BBL. As with the density flux, there is little contribution to the Reynolds
stress for frequencies greater than the buoyancy frequency N.

4. Discussion of results
The results above suggest that density fluxes at high frequencies (i.e. ω > N) are

not a good indicator of irreversible mixing. For example, Itsweire et al. (1986) argued
that only if ε > 15νN2 could one observe a positive downgradient density flux. In
our case with (̄ε/νN2) ≈ 1 we observe significant non-zero fluxes within the BBL
near ωf . In wave-forced turbulence, energy is supplied to the flow at the scale L = a
(wave amplitude) in both the density and velocity fields. In our case with a > LK
(the Kolmogorov scale), density fluxes are dominated by scale a. Depending on the
degree of nonlinearity of the waves, there is always the potential for density flux
contributions near the largest scales of the forced motion.

4.1. Eddy diffusivity from buoyancy flux

Osborn (1980) showed if one defined an eddy diffusivity Kρ in terms of buoyancy flux
b as

Kρ =
(g/ρ0)ρ′w′

N2
= − b

N2
, (7)

then, from a simplified form of the turbulent kinetic energy equation, the diffusivity
is

Kρ =

(
Rf

1− Rf
)

ε

N2
, (8)

where the flux Richardson number Rf is a measure of the mixing efficiency.
This model has some limitations, however, as can be seen by considering an

example of mixing in a salt-stratified system. Ivey, Imberger & Koseff (1998) showed
that the maximum value of Rf ≈ 0.25, implying from (8) that the maximum value of
Kρ ≈ 0.33(ε/N2). For dissipation levels just above the transition value of ε = 15νN2,
this implies that the effective diffusivity is Kρ ≈ 5ν = 5 × 10−6 m2 s−1. Conversely,
when the dissipation is slightly below the transition value of ε = 15νN2, the buoyancy
flux b is zero (e.g. Itsweire et al. 1986). This implies that Kρ must also be zero
according to the definition in (7), and the effective diffusivity must therefore revert
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Figure 5. As figure 4 but for cospectra of horizontal and vertical velocity. The accuracy of the
Reynolds stress is ±30%.

to the molecular value of 10−9 m2 s−1. It seems implausible that, when there are no
other transitions in the flow, a small change in the dissipation rate ε could result in
the effective diffusivity changing by three orders of magnitude.

This example suggests that the model in (7) and (8) is unable to describe all the
features we expect to see in turbulence in a stratified fluid. In particular, we suggest
that the buoyancy flux b may not always be a robust signature of mixing, hence
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Isopycnals
L

Figure 6. Schematic of the wrapping of isopycnal surfaces in a density-stratified fluid due to the
action of an eddy of scale L. Density difference between isopycnals across the eddy is |dρ/dz|L.

defining the eddy diffusivity Kρ in terms of buoyancy flux b can be misleading.
Rather, the eddy diffusivity should be defined in an alternative way, and we propose
such a model in the section below.

4.2. Eddy diffusivity from diascalar flux

The average diffusive or diascalar flux F passing across an isopycnal surface S is
given by (Winters & D’Asaro 1996)

F =
1

A

∫
S

κ∇ρ · n̂dS =
1

A

∫
S

κ|∇ρ|dS =
〈|∇ρ|〉2
|dρ/dz∗|κ, (9)

where z∗ is an isoscalar coordinate with dimensions of length, the angled brackets
indicate the spatial average over the surface S , κ is the molecular diffusivity of the
stratifying species and A is the geometrical projection of S onto a horizontal plane.
The corresponding value of the eddy diffusivity Kρ is

Kρ =
F

|dρ/dz∗| =
〈|∇ρ|〉2
|dρ/dz∗|2

κ. (10)

Consider a density-stratified fluid with Prandtl number Pr > 1 and an ambient (i.e.
adiabatically re-sorted) density gradient dρ/dz∗, with turbulent motions characterized
by fluctuations in the density field with a displacement scale L. The density difference
between fluid parcels within such structures is thus of order |dρ/dz∗|L (see figure 6).
As shown schematically in figure 6, the straining or ‘wrapping’ motion at scale L will
result in a convergence of isopycnal surfaces. The separation distance ∆xl(i = 1, 2, 3)
between two such isopycnal surfaces thus decreases until it becomes comparable to
the Batchelor scale LB = LK/Pr

1/2, and at this scale molecular diffusion smooths
the locally enhanced gradients. Since the scalar gradient spectra is blue, that is the
variance is concentrated at the smallest allowable scales or highest wavenumbers (i.e.
the Batchelor scale), this simple model implies that the characteristic magnitude of
the density gradient in (10) will be given by

〈|∇ρ|〉 ∼ ∆ρ

∆xi
∼ |dρ/dz∗|L

LB
. (11)
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Substituting (11) into (10) yields a scaling estimate of the diascalar diffusivity

Kρ ∼
(
L

LB

)2

κ. (12)

In general, the characteristic displacement scale L will depend on both fluid and flow
properties. We outline below a number of distinct regimes, ranging from laminar flow
to energetic density–stratified turbulence, and in each regime we make estimates of L
and hence of the expected value of Kρ.

4.2.1. Laminar flow

By definition, there is no turbulent motion in this regime. There are nevertheless
perturbations to the background density field with a characteristic displacement scale
L. The magnitude of the density gradients associated with these perturbations is not
appreciably greater than the background gradient, that is 〈|∇ρ|〉 ∼ |dρ/dz∗| or equally
L ∼ LB and hence (12) reduces to Kρ ∼ κ, as required.

4.2.2. Density-stratified turbulence

As shown by Batchelor (1959), in the absence of buoyancy effects (as would be the
case for a passive tracer, for example) scales smaller than the Kolmogorov lengthscale
LK are affected only by a uniform straining motion with strain rate (ε/ν)1/2, or
equivalently the straining motion has a characteristic timescale TS ∼ (ν/ε)1/2 In a
density-stratified turbulent flow, however, buoyancy should be important at these
scales if the buoyancy timescale Tb ∼ N−1∗ is small compared to TS , where N∗
refers to the buoyancy frequency based on the re-sorted density gradient dρ/dz∗. The
requirement that Tb < TS is equivalent to the requirement ε < νN2∗ . This implies that
the displacement scale L, characterizing the largest overturning scales in the density
field, must therefore be a function of ε, ν and N∗. If we assume that L increases with
an increase in the dissipation ε and decreases with an increase in N, then dimensional
reasoning implies that

L ∼ (νε)1/4/N∗. (13)

One interpretation of (13) is that for lengthscales larger than scale L, buoyancy forces
are important in the flow and act to suppress the scale of the density straining.
Itsweire et al. (1986), introduced a buoyancy lengthscale Lb ∼ w/N and we note that
our definition in (13) can be related to their lengthscale by assuming the r.m.s vertical
velocity w is of the same order as the Kolmogorov velocity scale (νε)1/4.

Substituting (13) into (12) yields

Kρ ∼ ε

N2∗
∼ ν

(
ε

νN2∗

)
. (14)

Equation (14) is valid for LB < L < LK , equivalent to the condition κN2∗ < ε < νN2∗ .
In the limit that L approaches LB , Kρ approaches the laminar value κ. Although the
result in (14) is similar in form to equation (8), the prediction from the buoyancy-
flux-based arguments leading to (8) is that in this regime with ε < νN2∗ the buoyancy
flux b is zero and hence the effective diffusivity equals the laminar value κ throughout
this regime. The result in (14) is thus fundamentally different.

4.2.3. Energetic density-stratified turbulence

A third regime exists if we consider the case where the displacement scales L are
larger than LK . Buoyancy forces will act to suppress overturning of any scales that are
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Figure 7. Schematic of vertical eddy diffusivity Kρ as a function of ε/νN2∗ showing the regimes
predicted by the model, ranging from laminar to energetic density-stratified turbulence.

larger than the Ozmidov scale LO = (ε/N3∗ )1/2. An upper bound can thus be obtained
by setting L ∼ LO into (12) yielding

Kρ ∼
(

ε

νN2∗

)1/2
ε

N2∗
∼ ν

(
ε

νN2∗

)3/2

. (15)

Equation (15) is valid for LO > LK , i.e. when ε > νN2∗ . In the limit when ε approaches
νN2∗ , the two results (14) and (15) agree. While the final expressions for the eddy
diffusivity Kρ in the two regimes in (14) and (15) are independent of the molecular
diffusivity κ, the earlier general result in (12) emphasizes the fundamental linear
relationship between Kρ and κ.

4.2.4. Very energetic or unstratified turbulence

The model leading to equation (12) assumes that during the straining or wrapping
of isopycnal surfaces depicted in figure 6, the background density field is ‘frozen’ in
the sense that the density contrast in (11) is always proportional to the background
density gradient dρ/dz∗. If the fluid was initially unstratified, then clearly (11) is not
defined and the model is not applicable in the unstratified limit. There is a second
more subtle possibility even if the fluid is intially stratified. If ε > 15νN2∗ there can
be a non-zero density flux ρ′w′ within the eddy. In the time it takes for the eddy
to rollup the isopycnals, this density flux could therefore weaken the local density
gradient within the eddy. This means that the density contrast estimated in (11)
would be an upper bound, implying the eddy diffusivity estimate in (12) would also
be an upper-bound estimate. In practice we therefore expect that once ε > 15νN2∗
the result in (15) will be an upper-bound estimate and the observed eddy diffusivities
Kρ will asymptotically approach the expected unstratified limit of Kρ − ε1/3L4/3 as
ε/νN2∗ → ∞.

4.2.5. Summary and application of the model

In figure 7 we show a schematic representation of the predictions of the above
model in the regimes that we have delineated in terms of the value of the parameter
ε/νN2∗ . The model is based on scaling arguments and experimental data are required
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to test the model and accurately define regime boundaries. The points A, B and
C represent the transitions between regimes. At point B the estimate of the eddy
diffusivity is Kρ ∼ ν. For a temperature-stratified fluid, this is only O(101) times the
diffusivity at point A, but for a salt-stratified fluid point B corresponds to an increase
of O(103) in Kρ over the molecular value at point A. Beyond point C when ε/νN2∗
becomes large and approaches the unstratified limit, we expect the model to fail and
to overestimate the actual diffusivity shown as the solid line. On the other hand, the
model predictions should become increasingly accurate as ε/νN2∗ decreases and the
turbulence approaches the diffusive limit. As figure 7 shows, the model predicts a
smoothly increasing value of the eddy diffusivity over the entire range.

How then does this model help us to interpret the experimental measurements? The
design of the present experiments did not allow us to independently measure the eddy
diffusivity Kρ and the dissipation. The observation from figure 3 is that, in the BBL,
ε ≈ νN2∗ . Hence the prediction from figure 7 is that Kρ ∼ ν ∼ 10−6 m2 s−1, three orders
of magnitude greater than the molecular diffusivity for salt of κ = 10−9 m2 s−1. From
§ 3.1, there is a large difference between the background laminar dissipation rate and
the turbulent dissipation rate in the boundary layer (figure 3 a), which is physically
consistent with this predicted range of diffusivities. The benthic layer is therefore
predicted to be highly turbulent, consistent with our qualitative observations.

For moderate turbulent intensities, equation (14) agrees with the scaling often
assumed by oceanographers, namely that Kρ = Γ (ε/N2∗ ) where Γ is interpreted as a
constant mixing efficiency of Γ = 0.2 (e.g. Munk & Wunsch 1998). Because we have
not measured the rate of change of background potential energy in these experiments,
we can offer no further insight into the value of Γ . For energetic turbulence, however,
when ε > νN2∗ the scaling results indicate that Kρ has an additional dependence on
the intensity measure (ε/νN2∗ )1/2. The range of validity of this expression remains to
be determined from experiments.

5. Conclusions
We have considered the case of mixing in a benthic boundary layer on a slope

which is energized by a beam of internal waves in a continuously stratified fluid. A
simple model of the energetics in the boundary layer region yields a prediction of
the rate of dissipation of turbulent kinetic energy ε in good agreement with direct
measurements. The results imply that even for non-critical waves, a large fraction of
the incident energy is lost upon reflection at a sloping boundary.

Our results are in the range where ε/νN2 ∼ O(1). This is low for typical oceanic
values, but such values are often found in lakes (e.g. Imberger & Ivey 1991; Saggio
& Imberger 2000). In this regime, analysis of the measured rates of dissipation and
density flux showed that the results could not be fully explained by existing models
describing the relationship between dissipation rate ε, the density flux and the eddy
diffusivity Kρ. We have, therefore, devised a simple model to describe the mixing using
a definition based on the diascalar flux, as outlined in the earlier work of Winters &
D’Asaro (1996). We have derived scaling relations for the eddy diffusivity Kρ which
exhibit consistent asymptotic limits and provide a description for turbulent mixing
in three flow regimes ranging from laminar to energetic density-stratified turbulence.
Our results are consistent with the notion that the eddy diffusivity depends on three
parameters: the strength of the background stratification N∗, the strength of the tur-
bulent dissipation rate ε, and the value of the kinematic viscosity ν. Interestingly, when
the flow is turbulent, the results are always independent of the molecular diffusivity κ.
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Future work needs to address the simultaneous measurement of the turbulent
dissipation rate ε and the eddy diffusivity Kρ, computed from the actual rate of
change of the background potential energy, in order to test the predictions of the
simple model outlined here.
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